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l.lntroduction

The aim of this research is the application of the indicial re-

sponse approach, a modeling approach originally used for studying

nonlinear problems in flight dynamics and exposed in a recent re-

view article [i], to the study of vortex-induced oscillations phe-

nomena. The problem chosen, vortex shedding from a bluff body, is

itself a subject with many practical applications and has attracted

the attention of researchers for over several decades. In spite

of the long intense interest, researchers in this field agree that

an adequate rationally based mathematical model of the phenomena

still does not exist [2]. The phenomenon of vortex shedding en-

ters into a class of problems involving a periodic equilibrium state

which is the result of a bifurcation from a previous steady equi-

librium state as a parameter exceeds some critical value. The oc-

currence is called a Hopf bifurcation. In [I] it was shown on the

basis of physical reasoning that the amplitude and frequency of the

periodic equilibrium state are determined by time invariant con-

ditions and it was suggested that specification of its phase de-

mands a proper consideration of fluid dynamics effects.

To that end, this study has two purposes. The first purpose is to
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develop the indicial response approach appropriate for the prob-

lem considered. The indicial response approach, which takes its

origin from linear theory, enables one to write the response of a

(linear) system as a superposition integral of step responses. This

approach transposed to nonlinear systems in flight dynamics gives

an analogous result in terms of a generalized superposition inte-

gral of elementary indicial responses [I]. We give in this report

a derivation of the above result in a suitable form for the prob-

lem considered, e.g. in terms of the appropriate physical quan-

tity which is the velocity field. Such a derivation provides us

the opportunity of analyzing the mathematical postulates involved,

which until now haven't been properly discussed. We demonstrate

that this main theoretical result can be applied first to the sim-

ple situation of a time-invariant equilibrium state. The indicial

response of the velocity field is derived directly from the equa-

tions governing the fluid motion. These are taken to be the in-

compressible Navier-Stokes equations. Results for the aerodynamic

response are shown to confirm the foln_, obtained previously by a

variety of approaches [i]. The analysis is then directed to the

new situation where the equilibrium state is periodic in time. The



second purpose is to apply the results of the analysis to the par-

ticular case of flow past a cylinder in periodically forced motion

to derive some salient features. The indicial response approach

is shown to be equivalent to the currently popular amplitude equa-

tion approach.

2.Generalized superposition integral based on indicial response

approach.

We derive the indicial response approach with emphasis on the phys-

ical postulates involved.

For generality, consider an aircraft that has started from rest in

the distant past with fixed axial velocity U0 and zero vertical ve-

locity ( cf. Fig. i). Its motion is referred to an X_Y coor-

dinate system that is fixed in space. It passes through the ori-

gin at the arbitrarily chosen initial instant _ = O, maintaining

the constant axial velocity Uo and simultaneously translating ver-

tically, with vertical velocity vc at the center of gravity being

an arbitrary function of time f. The angle-of-attack _ is defined

as the angle between the resultant velocity vector and the aircraft's

longitudinal axis:

4



u,, J (1)

Let us note that we specify a constant axial velocity U0 to be in

accord with normal operating conditions in wind- or water-tunnel

experiments, wherein the uniform oncoming flow, normally held at

constant velocity, would supply the corresponding value of U0. To

form the indicial response, we need to consider two motions. In

the first one, the aircraft undergoes a variation of angle of at-

tack _(_) from time zero to a time _ = z ( cf. Fig. 2). Sub-

sequent to time T, the angle of attack is held constant at _(F).

The first motion history therefore is designated as _(_)

(2)

IIotice that the subscript r is used to distinguish the above mo-

tion history from the natural motion history _(_). In the second

motion, the aircraft undergoes the same angle of attack history _(_)

up to time r. Subsequent to T, the angle of attack again is held

constant, but is given an incremental step change _ over its pre-

vious value of e(T). The second motion, designated _(_), is rep-

5



resented as

with"

Let us define by {(i,t,7)(i "

: - (3)

(: Ao (4)

0 • ifO<_<T
:

spatial coordinates, t" time of ob-

servation subsequent to r) the velocity field in the neighborhood

of the aircraft.

The indicial response approach is established by making use of the

following postulates.

Postulate §]: Corresponding to a motion history belonging to

the family of motion histories _,(_) with 7 C [O,l], there exists

a velocity field {(f,t,T) well defined and supposed _mown by some

means.

In mathematical terms, one could say that there exists a mapping

of the space of scalar quantities _rl¢_J with r _ [O,tI to the space

of vectors u(z,t_F). However, in physical terms used in this re-

port. we simply say that there exists a velocity response { to a

motion history _,. An analogous postulate is held about the ex-

6



istence of velocity fields associated with the family of motion his-

tories _;(_) with T _ [0, tl:

.Postulate §2: To each member of the family of motion histories

c_(_) with r _ [0,11, there exists a velocity response ffIi, o;(_);t,r].

Such velocity response reproduces the velocity response correspond-

ing to the motion history _+a_(_) within a negligible error of _(Ao_):

ff[o_,(_) -_ A_.U_(_)] = ff[o_,+A_-(_)] + O(Ac_ 2) i = 1,...,n (6)

The velocity of the angle-of-attack &(r) - As is supposed to beAT

defined for each value of T C [O,t]. A further postulate is made

about the existence of the indicial response of the velocity field:

Postulate _ 3: For every value of r c [O,t], there exists an in-

dicial response 6_ii,_(_);t, ri defined as:

]

,_o,i,,_(,_): t,_-! = ti_Ao_,,X-_ {,Z!i, _(_ ) _ ,',_.,_(_);t, r]- ,_i.e,,_,.(_);t. ri}

(7)

Given a motion history _(c._ C -oc,t.). it is possible to choose

an initial time t0 and make a time partition ito,tl,...,t,_] of the time

interval ito,t] such that"

t,_ = t, nat : t. t, t, j -: At (i-- l,...,n) (8)



One has the following relations"

= _ _,,(_)]A_÷ a(_ 2)

= _i_,,(_)]_÷ a(_ _)

(9)

Notice that the additional dependence of ui on i,t,t,({ = 1,...,n)

is omitted for reason of abreviation.

By summing up the relations (9) and using postulate §2, one gets

ff.[at,,(_)!- fro!at (()1 = _ ff_{at,(()]Lo + O(_a 2) (10)
t=l

i.e. "

jft t
{i._.at(_.);t,tl : d,,[._,at,,(_.):t.t,, i _ dr _.(i,o.(_);t,_-] da• ,, _ +o(_o?)(11)

The relation (11) constitutes our main result that will be used in

the subsequent sections. Notice that it relies on three physical

postulates which have to be satisfied.

3.Time-invariant equilibrium state

We wish to derive the aerodynamic response on the basis of rela-

tion (11). In the following subsections, we shall demonstrate, on
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the basis of the IIavier-Stokes equations, that it is possible to

find analytical expressions of the velocity responses over the time

interval t-7 > 0 to the motion histories _(c) and er(_)"

3.1 Construction of the velocity response for the motion history _r(_)

For simplicity, we neglect compressibility effects and assume that

the fluid motion is governed by the I_avier-Stokes equations for an

incompressible fluid. In a coordinate system attached to the body.

the Navier-Stokes equations have an additional term {c (where _.

is the vertical velocity at the mass center) to account for the ac-

celeration of the coordinate system relative to inertial space:

a_

Oq + (ff'_)ff + _p - uV_ff = -{_" (12)

Here, ff is the velocity field, p the pressure and _ the kinematic

viscosity. We wish to derive a form for the velocity response to

the motion a,(_) over the time interval ! r _:.O. Since a¢(_) =

a(7) = constant for t--r > O, boundary conditions determining the

velocity response over the interval I--7 > 0 are perfectly steady.

Consequently, we expect the velocity response to attain an equi-

librium state as the interval becomes large, i.e., as t--T-_ 00.

The response of the velocity field can be decomposed into an equi-

librium state ffequ,land a transient component fftransthat decays as

9



time increases. The principal condition that we impose in this sec-

tion is that the equilibrium state u_qu,i be time-invariant. Thus,

as time is referred to F (the instant specifying when the angle-

of-attack is to be kept constant thereafter), we have"

,i(i,t- _-> o) -- ,i_,,,,(_)+ ,_,_,_,,,(_,t-T> o) / (is)

]p(i,t - T > O) = Pequi,(1) + Ptran.,(:r,t- 7" > O)

To simplify the notation, we define"

t+ = t- r > o (14)

Substituting (13) into (12), we get for the equations governing fftra_,

Ot+

+(,_,_,.. 9),_,_,.. + ,f((T)(1 - u(t+)) _ o /
(is)

where H(t_) is the Heaviside function"

i

o • t_ < o
H(t+)

[ 1 • t+ >0

(16)

with ut_n, = 0 on appropriate boundaries 0_.

To find a form for fftr_n,, we shall first consider a small distur-
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_J

bance u which satisfies the linearized version of (15)"

JV._' 0

(17)

with _'--0 on On. Equations (17) constitute a linear eigenvalue

problem. Since u_q_,l is independent of time. the eigensolutions _

are also independent of time. It is possible to choose them such

that [3]

u,, exp(A.t+)ff.(i*) _.-_,, = 0 , "7,,Io,,-- o (18)

l

From equation (18), the corresponding expression for p is"

(19)
t

p' -- exp(A.t+)p.(_)

The eigensolutions _n(i)(,t = 1,...,N) are associated with the eigen-

values An, the latter all having negative real parts in the phys-

ical situation under consideration. There is an equation adjoint

to (17) having a set of eigensolutions 2_ such that [3]

(2o)
!"7,,'7j,

""Jj/

where the brackets ( } denote the scalar product over space. The

eigensolutions _(f) span a complete functional space and one can
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use this fact to construct a suitable solution form for utr,_(i._).

Returning now to the full nonlinear equation (15) governing dtr_,_._,

let us assign fftr_._the form resulting from its projection onto the

functional space of the _n:

N

n----1

where the barred terms denote complex conjugates (c.c.). It will

be convenient to break the pressure term Pt_,_,o in (13) into two parts"

one following the form of equation (21), and the other (denoted _)

corresponding to the nonlinear part of the disturbance equations"

N

pt.,,.,,.(E,t+) = __. (d,,(t+)p'.(Y.) + 3.(t+)p'(_)) + _(E,t+) (22)
rt_l

After inserting (21) and (22) into (15) and eliminating the set of

terms that identically satisfies the linear form (17), we find that

the coefficients dn(l+) satisfy the following equation'

___ (dn(l__. ) - ,_ndr,) _n + Z(gln - /_ndn)_:n -_ _h : - Z _ ( dndm('_n'_)'_m-_-

12 n 12 _7_

d,d,,('_n.V)qm + d,d,_(_n.V)_m + d,,d,_(_,._)_,_- #c.(r).(1- H(t+))) (23)

Multiplying this equation by the vector "),j(i'), integrating over space

and using the properties of adjoint vectors defined by (20), we ob-

tain

di(t_) Ajd_ _ _ (d.d,_(("7,,.V)"Tm, _j > + d.dm(('7.._)_m, "_'-_'.... /_ +
n rn

12



-c,(_(_)).(1 - H(t.))

with:

-. _t.d,_ / _ _ "- -'" + d.dr_((_,_._)_m,?=]))

3 : 1 .... , N (24

L

fv _ vc _ (2_)

Notice that the pressure gradient term _ in (23) makes no appear-

ance in (24). The properties of _n and _ (solenoidal and vanish-

ing on 0Q) ensure that scalar products of gradient terms (such as

_p) and q-_ will be identically zero.

By defining appropriate coefficients Ajnm,Bjnm, C3nm and Djnm, the

system of equations (24) can be rewritten as:

d3(t+) Aj(a(r))dj(t_) = _-_._ (Aj_m(o(r))d.(t_)d,_(t+)+
n m

Bj,_(o:(T))dn(t_)d,_(t_) + Cj,_,.(a(r))dn(t+)dm(t_) + D_n,_(o(r))-d.(t+)_t_(t+)

-_j(_(_)).(1- n(t+)), j: 1,...,N (z6)

Thus, it appears from the system of equations (26) that it is re-

quired to fix the values of dj(t+ = 0)(3 = I,....N) at some ori-

gin of time.

The values of dj(t+ = O) must be determined from a match of the ve-

locity fields on either side of c = r"

(27)

13



On the negative side of _ = T, in general the velocity field is

the resultant of the entire past history of the motion a(_) up to

the ''present'' time _ = T. Through specification of the dj at

t+ = 0 in terms of this velocity field, the velocity response for

t_ _ O acknowledges its dependence on the past motion. The rep-

resentation of this past motion in a suitable way is all that re-

mains to be done to realize a complete characterization of the ve-

locity response for t+ _ 0 and thus to satisfy postulate §I. We

shall defer a discussion of this important step until we have de-

rived the velocity response to the motion a_(_) and formed the in-

dicial response. For the present, we simply designate the depen-

dence of dj(t._= O) on the past motion as a functional:

(28)

3.2 Construction of the velocity response for the motion history a_(_)

The velocity response fo the motion history a_(_) can be constructed

in an analogous way to that in the previous section. It is pos-

sible to demonstrate that the velocity response to the motion his-

, ¢
tory a_(_) reproduces the velocity response to the motion history

ar+_,(_) within some negligible error of _(Aa 2) for time t _ T +

AT. Postulate §2 is therefore satisfied. We refer for complete

14



details to reference [4].
"4

It is shown that the velocity response

to the motion history e_(_) is"

3.3 Indicial and total responses of the velocity field

The indicial response of the velocity field can be obtained as

ff_ = lira ,7[-7*f_:_]_._,a_,..,_-ff[i,a¢(_c)] (30)

Indeed. it is permissible to make the operation defined by the right-

hand-side member of equation (30) on the analytical expressions ob-

tained for u[ar(_)] and ffia_(_)] in the previous subsections. There-

fore, we have satisfied postulate _3. The operation in equation

(30) leads to the following expression for ff_:

S_ = lim
ff_quit(_,a(r)- A,,)- ff_q_a(/,a(r)) _ lim 1

Ao _o Ao

(d2.ia2(_)'/_.(i,a(_-) + Ao) - d. la_(_)l%_(i,a(r)) ) + c.c. (31)
Y_

One gets"

0 0 1

Oaff_q,,a(i.,a(T)) + _ d.[a(_c)]_'_,_ + lim
n Aa-.O Acl

l'i

(32)

15



The total response of the velocity field is obtained by summing the

indicial response along the motion history at(f) according to equa-

tion (11):

( di'[a; (_) 1 - d'ia" (_) ] ) } (33)+ _ lim "_n +c.c.
n Ao_O hS_

It has the following analytical form

(34)

with the functional dependence of 3r determined by the initial con-

dition dj(t. = 0)(3= 1,...,N).

3.4 Determination of the initial condition dj(t+ = O)(j = 1,...,N)

As it appears in equation (33), the value of the velocity field con-

tains terms appearing under an integration over time such as

exPiAj(a(T))(t - r)} j = 1,...,N

due to the behavior of _ia,(_)i(j = 1,...,n) (cf. [4]). Hence. only

a recent past motion history is taken into account in determining

the value of the velocity field. Under such circumstances, one can

consider a fit of the recent past motion history to a known motion

history of the system. A motion history of the system is provided,

16



for instance, bY making experiments under external periodic forc-

ing It can be shown, either theoretically or experimentally, that

the response of the periodically forced system is periodic in time

with the same period _ as for the external forcing:

_(i,T)
n

(35)

The choice of dj(t+ = O) is governed by the following equation, de-

rived from equation (27)

ff(i,v_) = ff_q,m(i,r_-) + _ dn({ = T+)"_n(i, a(v+))
n

(36)

i.e. by using the properties of adjoint vectors"

d_(¢= _.) = :',,i(Y._),%(Y,,_(T+))>- <_,_(i,T+),_j(_,_(_))> (37)

The analytical dependence of di(t+ = O) is therefore"

(38)

For slow motion where 6_(7)__ _(7), one can expand d.7"

Odj

dj.(t+ = O) = d3(t:_(_-),0 ) + &(T) Oc_(T)----_+ 0(&2(T))

3.5 Determination of the lift force - Discussions

(39)

Using relation (39) valid for slow motion, one can rewrite rela-

17



tion (34) as:

- f,' d_'(_(T),_(Tl,t+) (40)

It is possible to derive the pressure from the velocity field by

using the ].]avier-Stokes equations. The value of the lift force L

is obtained by taking the value of the pressure on the body sur-

face (ON) and by integrating over a solid angle:

L = ,_ p(i.,t)[oBsin(O)dO (41)

Hence, the lift coefficient is of the following form

_t__ da_id,[a_(_),t + O],t+,rJ (42)cL(t) .- c[_"l_(t)J- d_._ =

where the value of the function 7 approaches zero as t-r---+ oo,

due to the properties of d,_(t_). The relation (42) was derived in

previous work on the basis of functional expansion approach [i]:

the function 5r was called the deficiency function. It was used

for various applications in aircraft dynamics (of. for instance

[5]).The value of the lift force can be approximated as:

eL(t) CL_,,,,t_(t) ] f,,' d___ - d_7(,_(_),a(_),t.)

it da_- c['""[_(t)i - dr-_rT(a(_'),t+) ÷ tg(&2(t)) (43)

18



Such relation is used in most mathematical models in flight dynam-

ics.

4. Periodic equilibrium state

As one of the values of the real part of the eigenvalues Aj(3 =

I,...,N) becomes positive for increasing Reynolds number, the time-

invariant equilibrium state loses its stability. A Hopf bifurca-

tion occurs: the time-invariant equilibrium state is replaced by

a time-varying equilibrium state. The analytical development in

the present case follows the same procedure as in the previous sec-

tion. However, it is more laborious, due to the presence of an ad-

ditional parameter which is the phase ¢(7) of the periodic equi-

librium state. We shall refer to reference [4] for complete de-

tails. We give the result obtained for the lift force

cL(t) - _t d--,L - d,-(_ + _ ). _

+ dT&(7 _f'tr'm" , ,J_L,, " _tT_,_(T);t- Ti (44)

where CL q_'" denotes the equilibrium component of the lift force and

Ct,,,.._ denotes its transient part. In the case of vortex-induced
L

pequzl
vibrations, the value of _L can be deduced from experimental data

19



on a stationary cylinder:

cequil r (45)

with Aoo and ks known from experimental data.

pequil (theThe contribution into CL(t ) contains terms associated with _L

first two terms of the right-hand-side member of equation (44)).

g-wequil t) .Their contribution may exceed the value of "-'L (c,(t),¢(t);t,'c=

as shown by our own numerical simulation, based on the following

expression for @(r):

¢(T) = Apa(r) + Bp&(T) (46)

Such relation for ¢(7) is suggested by physical reasoning [4].

It appears clearly that relation (43), giving the lift force in the

first physical situation with time-invariant equilibrium state, is

not adequate for the periodic equlibrium state. Modeling of sys-

tems in flight dyarunics involving a new regime (for instance, stall

phenomenon) requires an appropriate change of the analytical ex-

pression of the lift force.

5. Predictions for a periodically forced cylinder near the Hopf

bifurcation: relationship with the amplitude equation approach.

20



It appears from relation (44) the the lift force depends generally

on the motion history of angle of attack, which is itself depen-

dent on the value of the lift force (through the governing equa-

tion of motion of the elastically mounted cylinder). So. gener-

ally the equations governing the angle of attack and the lift force

are coupled. In the special case of a periodically forced cylin-

der, one controls externally the motion and therefore the angle-

of-attack. Hence. the only independent variable of the system is

constituted by the lift force, i.e. the velocity field. 0ne can

simplify furthermore the analysis by restricting it just near the

Hopf bifurcation. Such a restriction corresponds to the hypoth-

esis of the amplitude equation approach.

The equations describing the present physical situation correspond

to equations (26) slightly modified: the terms cj.(l-H(t,)) are

to be replaced by appropriate terms associated with external forc-

ing (cf. [4]). Due to the restriction of the analysis to the neigh-

borhood of the critical situation, only the equation correspond-

ing to the projection onto the critical eigenvalue To (associated

with the eigenvalue _0) is interesting to study. We make use of

the theoretical results of Elphick et al. [6] to carry out the sim-

21



plification of this equation to get its ''normal form'' (cf. ref-

erence [4] for complete details). The final equation obtained is"

dA

d_- = (a + iwo)A - b[A!2A - c_e _t (47)

where a,b are complex constants, c is a real constant, _ is the

forcing amplitude and _ is the external frequency.

It can be shown that equations (47) are derived from the follow-

ing modified Van der Pol equation"

- (a- _A2)A + w_A - _A 3 = fosin(_t) (48)

Such an equivalence was already noticed by Provansal [7]. However,

the author hadn't realized its relationship with oscillator mod-

els of vortex-induced oscillations. Indeed, one can show that the

lift force generated by vortex-shedding behaves as the amplitude

of the velocity field.

We have therefore justified the choice of Van der Pol equation as

the model of the lift force generated by vortex-shedding from fluid

dynamics considerations (IIavier-Stokes equations). Furthermore,

our analysis supports the analytical form of the fluid oscillator

proposed by Skop and Griffin [8]. We have also analysed the am-

plitude equation (47) to show that there is jump and hysteresis phe-
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nomena inside the lock-in regim e (where the body oscillates at the

forcing frequency).

6.Conclusion

In the present study, we have taken some effort to improve our math-

ematical modeling approach in order to incorporate a Hopf bifur-

cation. We have developed the indicial response of the velocity

field, based on the incompressible Navier-Stokes equations for the

regimes of time-invariant and periodic equilibrium state.

The theory has been applied to the particular case of flow past a

cylinder in periodically forced motion. It has been shown that the

indicial response approach is equivalent to the currently popular

amplitude equation approach, near the Hopf bifurcation. By rec-

ognizing that the lift force behaves like the amplitude of the ve-

locity field, we have been able to justify the choice of a Van-der-

Pol equation which was used empirically to model the lift force gen-

erated by vortex-shedding. We have been also able to capture jump

and hysteresis phenomena that experiments indicate occur within the

lock-in regime (where the velocity field oscillates at the forc-

ing frequency).

It is hoped that our modeling approach will have some beneficial
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implications for mathematical modeling of other configurations of

self-induced vibrations that bear common features.
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LEGEND.

Fig.l.- Maneuver referred to space-fixed (X,)") and moving (z,y) co-

ordinates, the latter attached to the airplane.

Fig.2.- Formation of indicial response.
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